skip to main content


Search for: All records

Creators/Authors contains: "Jin, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Network emulation allows unmodified code execution on lightweight containers to enable accurate and scalable networked application testing. However, such testbeds cannot guarantee fidelity under high workloads, especially when many processes concurrently request resources (e.g., CPU, disk I/O, GPU, and network bandwidth) that are more than the underlying physical machine can offer. A virtual time system enables the emulated hosts to maintain their own notion of virtual time. A container can stop advancing its time when not running (e.g., in an idle or suspended state). The existing virtual time systems focus on precise time management for CPU-intensive applications but are not designed to handle other operations, such as disk I/O, network I/O, and GPU computation. In this paper, we develop a lightweight virtual time system that integrates precise I/O time for container-based network emulation. We model and analyze the temporal error during I/O operations and develop a barrier-based time compensation mechanism in the Linux kernel. We also design and implement Dynamic Load Monitor (DLM) to mitigate the temporal error during I/O resource contention. VT-IO enables accurate virtual time advancement with precise I/O time measurement and compensation. The experimental results demonstrate a significant improvement in temporal error with the introduction of DLM. The temporal error is reduced from 7.889 seconds to 0.074 seconds when utilizing the DLM in the virtual time system. Remarkably, this improvement is achieved with an overall overhead of only 1.36% of the total execution time. 
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  2. Free, publicly-accessible full text available October 31, 2024
  3. P4’s data-plane programmability allows for highly customizable and programmable packet processing, enabling rapid innovation in network applications, such as virtualization, security, load balancing, and traffic engineering. Researchers extensively use Mininet, a popular network emulator, integrated with BMv2, for fast and flexible prototyping of these P4-based applications, but due to its lower performance in terms of throughput and latency compared to a production-grade software switch like Open vSwitch, it is crucial to have an accurate and scalable emulation testbed. In this paper, we develop a lightweight virtual time system and integrate it into Mininet with BMv2 to enhance fidelity and scalability. By scaling the time of interactions between containers and the underlying physical machine by a time dilation factor (TDF), we can trade time with system resources, making the emulated P4 network appear to be faster from the viewpoint of the switch/host processes in the container. Our experimental results show that the testbed can accurately emulate much larger networks with high loads, scaled by a factor of TDF with extremely low system overhead. 
    more » « less
    Free, publicly-accessible full text available June 21, 2024
  4. Free, publicly-accessible full text available June 21, 2024
  5. We present a unique virtual testbed that combines a data-plane programmable network emulator and a power distribution system simulator to evaluate smart grid security and resilience applications. The testbed employs a virtual time system for effective simulation synchronization and fidelity enhancement. We showcase the advantages of the simulation testbed through an anomaly detection case study. 
    more » « less
    Free, publicly-accessible full text available June 21, 2024
  6. Phasor Measurement Units (PMU), due to their capability for providing highly precise and time-synchronized measurements of synchrophasors, have now become indispensable in wide area monitoring of power-grid systems. Successful and reliable delivery of synchrophasor packets from the PMUs to the Phasor Data Concentrators (PDCs) and beyond, requires a backbone communication network that is robust and resilient to failures. These networks are vulnerable to a range of failures that include cyber-attacks, system or device level outages and link failures. In this paper, we present a framework to evaluate the resilience of a PMU network in the context of link failures. We model the PMU network as a connected graph and link failures as edges being removed from the graph. Our approach, inspired by model checking methods, involves exhaustively checking the reachability of PMU nodes to PDC nodes, for all possible combinations of link failures, given an expected number of links fail simultaneously. Using the IEEE 14-bus system, we illustrate the construction of the graph model and the solution design. Finally, a comparative evaluation on how adding redundant links to the network improves the Power System Observability, is performed on the IEEE 118 bus-system. 
    more » « less
  7. null (Ed.)
    Our world today increasingly relies on the orchestration of digital and physical systems to ensure the successful operations of many complex and critical infrastructures. Simulation-based testbeds are useful tools for engineering those cyber-physical systems and evaluating their efficiency, security, and resilience. In this article, we present a cyber-physical system testing platform combining distributed physical computing and networking hardware and simulation models. A core component is the distributed virtual time system that enables the efficient synchronization of virtual clocks among distributed embedded Linux devices. Virtual clocks also enable high-fidelity experimentation by interrupting real and emulated cyber-physical applications to inject offline simulation data. We design and implement two modes of the distributed virtual time: periodic mode for scheduling repetitive events like sensor device measurements, and dynamic mode for on-demand interrupt-based synchronization. We also analyze the performance of both approaches to synchronization including overhead, accuracy, and error introduced from each approach. By interconnecting the embedded devices’ general purpose IO pins, they can coordinate and synchronize with low overhead, under 50 microseconds for eight processes across four embedded Linux devices. Finally, we demonstrate the usability of our testbed and the differences between both approaches in a power grid control application. 
    more » « less